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Abstract - A new approach combining the use of the Kalman filter with an extended version of a smoothing
technique and introducing the use of future time measurements is developed in order to improve the solution of a
nonlinear Inverse Heat Conduction Problem (IHCP). The behavior of the proposed algorithm is analyzed in
presence of a real set of experimental noisy temperature measurements. Estimation results are validated by using
a space marching technique proposed by Raynaud and Bransier whose performance is already known for the
solution of the nonlinear IHCP. The influence of the number of future time data on the precision and the stability
of the solution is analyzed according to the inverse time step, the location of measurement sensor and the
standard deviation associated with the modeling error.

1. INTRODUCTION
Due to the diffusive nature of the heat conduction, surface temperature changes are damped and lagged in the
interior of the solid. So small inaccuracies in the measured interior temperatures can cause large oscillations in
the estimated surface conditions which can show a time lag dependent on the measurement location. Based on
the fact that  the response of a temperature sensor placed at a distance below a heated surface can continue to rise
even after the applied surface heat flux returns to zero, Beck was the first to recognize that a precise estimation
of surface conditions requires the use of temperatures measured at times ulterior to the time of estimation and
known as future time measurements, [12].

The use of future temperatures was first applied by Beck in [2] to the Duhamel�s theorem solution of the
IHCP, then combined for the first time with difference methods by Beck and Wolf, [4]. In its original version
that represents a reference for inverse methods in heat transfer, the function specification method proposed by
Beck in [1] uses future time temperatures in a procedure based on the minimization of the least squares error
between computed and measured temperatures. This method underwent different improvements. It was
combined by Osman et al. in [13] with a regularization technique, then modified by Blanc et al. in [5] using a
time-variable number of future temperatures. Raynaud and Bransier have also introduced in [16] future time
temperatures in the analysis of the IHCP using a space-marching finite-difference procedure which is as precise
as the Beck�s method.

In this study, we introduce the use of future time measurements in a new approach combining the Kalman
filter, [6] with an extended version of a smoothing technique. The proposed algorithm is developed in order to
improve the solution of a nonlinear transient one-dimensional IHCP involving reconstruction of the heat flux
density and the temperature at the surface of a cylindrical heat conducting solid. The aim of this work is to
analyze the behavior of the extended Kalman smoothing technique in presence of a real set of experimental noisy
temperature measurements.

The influence of the number of future time data on the accuracy and the stability of the solution is studied
according to the location of measurement sensors, the standard deviation associated with the modeling error and
the inverse time step. Estimation results are validated with the solution of the space marching technique
proposed by Raynaud and Bransier in [16], which is simple, rapid and easily adapt to nonlinear problems and
whose performance is already known as shown in [15].

2. PROBLEM DESCRIPTION
2.1. Experimental set-up
The surface of a cylindrical sample in stainless steel of diameter D=14mm and thickness e=15mm is submitted
to a radiation heat flux coming from a reflection furnace built in the center of heat transfer at INSA (Lyon-
France) and which allows to apply a uniformly distributed surface heat flux density. This reflection furnace is
composed of two parabolic mirrors made of crystal and having each a diameter of 1.5 m and an opening angle of
120°. The surface heat flux comes from an incandescent lamp whose radiation is concentrated toward the sample
by one or several reflections on the two mirrors (see Figure 1).

In order to minimize lateral heat transfer, two reflective shields in stainless steel are placed around the
cylinder while letting an air thickness of 1mm. Air of the same thickness also separates the two shields (see
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Figure 2). A transparent shield in glass of diameter 25mm and thickness 4mm is placed against the surface of the
sample to avoid convection heat transfer. This surface is covered of a black painting (total emissivity 0.98) in
order to increase absorption of the radiation coming from the furnace. The back side of the cylinder is cooled by
a water circulation.

Figure 1. Sketch of the experimental set-up.

The thermal diffusivity α and the volumetric heat capacity C of stainless steel are determined experimentally,
as described in [7], for temperatures varying between 256 K and 417 K. In this range of temperatures, variation
of thermal diffusivity is negligible. Its assumed constant value is α = 3.87*10-6m²/s.
Variation of volumetric heat capacity with temperature is given by,
C(T) = 7697.4638 T + 1490195.1  (T in K ; C in J/m3.K).
The heat conductivity is calculated using the following relation:
λ(T) = α*C(T) = 0.02978 T + 5.767  (T in K ; λ in W/m.K)

Four thermocouples (type K, wire diameter: 0.1mm) are spot welded inside the sample on its axis at known
positions (within ± 0.05mm): z1=2.1mm; z2=4.1mm; z3=8.1mm and z4=12.1mm (see Figure 2). Temperature
measurements are recorded by a Keithley device (model 575) with a maximum rate of 20 readings per second.

Figure 2. Description of the cylindrical sample.

2.2. Mathematical model
The problem under study is described by the one-dimensional nonlinear heat conduction equation for
homogeneous and isotropic material:
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where T is the temperature, z is the spatial coordinate, t is the time, q is the heat flux density and T0 is the initial
temperature assumed to be uniform.

Ignoring the boundary condition at z=e (see Figure 2), we limit our survey to the region between z=0 and z=z4
where the transient temperature measurements at z4 denoted as y4(t) are assumed to be the second boundary
condition of the model [eqn.(4)]. The boundary condition at z=0 [eqn.(3)], which is the heat flux density, is
unknown and will be estimated as a function of time with the inverse method. The solution of the considered
inverse problem requires the use of transient temperature measurements taken in z=zm (m=1,2,3) which leads to
an additional condition written as,

)()( tyt,zzT m
m ==    for t > 0 (5)

These measurements are used in the inverse technique in order to estimate simultaneously with the surface
heat flux density q(0,t) the time variation of the surface temperature T(0,t).

3. THE EXTENDED KALMAN SMOOTHING TECHNIQUE
The proposed algorithm is a combination of the extended Kalman filter [9] with a new version of the fixed
interval smoothing technique [8] capable of handling the nonlinear inverse heat conduction problem under study.
Nonlinear equations of the problem are modified by linearization about some reference state vector. Then, the
original formulation of the smoothing technique, referred to as the RTS (Rauch Tung Striebel) algorithm [14], is
applied to the linearized equations. Owing to this new approach, the state at time tk is estimated using nf
observations ulterior to the estimation time, where nf is the fixed length time interval. This allows to introduce
the use of future measurements in the Kalman filter technique.

In case of nonlinear systems, the state vector x and the measurements vector y are respectively represented by
the following relations:

kk1k k Vxx +=+ ),(FFFF (6)

1k1k1k k +++ ++= Wxy )1,(HHHH (7)
where F F F F and H H H H are nonlinear vectors, Vk and Wk are noise vectors, associated respectively to the model and the
measurements, that are white and Gaussian and have zero mean. The initial state x0 is also considered a Gaussian
random variable whose covariance matrix is denoted as P0.

The extended Kalman filter algorithm takes place in a recursive manner in two stages, [11]:
•  the prediction at tk+1 based on the model and the observations until tk,
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and the covariance matrix associated with this prediction,
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•  the correction of the prediction using the new information given by the observation at tk+1,
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Q is the covariance matrix of the model error, K is the Kalman gain given by,
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I is the identity matrix, H is the observation matrix and R is the covariance matrix of measurement noise.
We adopt the same linearization used with the extended Kalman filter in [6], whose reference vector is

updated with the filter�s estimates getting at each time the value of the last available estimation. So the fixed
interval smoothing technique leads to the following recursive relation, [8]:

)],�(�[�� /1 kknkkkk/n xxCxx FFFF−+= + (13a)
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k/n�x represents the state estimation at time tk using nf=(n-k) future measurements, where n is the total number of
time steps.

The computational procedure takes place in a forward recursive sweep followed by a backward sweep which
provides a fixed-lag smoothing by first filtering up to the current measurement at time tk using the extended
Kalman filter algorithm [eqns (8)-(12)] and then sweeping back nf=(n-k) steps with the recursive equation of
RTS algorithm [eqns (13)]. The old filter estimate kx�  is so updated to yield an improved smoothed
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estimate nk/�x which uses further nf future measurement data.
Since we are interested in estimating the time variation of the surface heat flux density in addition of the

correction of the process state xk (composed by nodal temperatures within the sample and on the surface), we
apply the above estimation algorithm using an augmented state vector Xk defined in [17] as Xk = [xk , qk] t where
qk is considered a further state variable appended to the original ones and assumed to be piecewise constant.

4. RESULTS AND DISCUSSIONS
Temperatures represented in Figure 3 are recorded from the four thermocouples for a lamp heat power of
1000W, that is 40 W/cm². We intend to estimate the surface heat flux density as well as the surface temperature
of the sample using only one measurement provided by one of the three thermocouples placed in z1, z2 or z3 as
shown in Figure 2. The two other measurements will be used for the comparison with calculated temperatures.
Transient temperature measurements taken at z4 are regarded as being the second boundary condition of the
problem. In this one-sensor case, the covariance matrix R of the measurement noise is reduced to a scalar
quantity equal to the variance 2

mσ where the standard deviation relative to the measurement noise is taken as

mσ =0.05 K.

Figure 3. Recorded temperatures from the four thermocouples.

Inversion results of the Kalman filter and the Kalman smoother are validated by using the Raynaud and
Bransier inverse method. The accuracy of estimated surface conditions is also analyzed by superposing
computed (calculated with the estimated heat flux density) and measured temperatures and by calculating the
relative error between these two temperatures defined as [10],
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where yi is the measured temperature, Ti is the computed temperature at the sensor location at time corresponding
to the ith measurement and M=m*n (m is the number of sensors used for comparison equal to 3 in this study and
n is the number of temperature recordings per thermocouple during the experiment).

Time variations of surface heat flux density and surface temperature are estimated using different positions of
the measurement sensor providing information needed for the inversion. The inverse time step (time interval
separating two successive measurements) is taken as ∆t=0.1s. The standard deviation of the modeling error
which is a stabilizing parameter in the Kalman filter algorithm [7,9], is assumed to be constant and is taken as
σq=100W/m². This parameter is associated with the diagonal covariance matrix Q whose only element different
from zero is the variance 2

qσ  so as to compensate the model mismatch caused by the unknown heat flux
approximation with a piecewise constant function.

According to Figures 4 and 5, one can note that the Kalman filter estimates show a time-lag when superposed
to the Raynaud�s method solutions. This lag increases as the distance between the sensor and the active surface
(subject to the heat flux) is larger. In this case, the solution, notably the heat flux density, becomes less stable for
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the two methods. The Kalman smoother allows to obtain a symmetrical and more stable solution whose
superposition with the validation method estimation is improved, by using a number of future measurements
dependent on the measurement location. As shown in Figures 4 and 5, a farther sensor from the surface requires
a larger number nf of future time measurements. An optimal value of this number is obtained by increasing it
progressively until it provides only a negligible improvement on the estimates as described in [8]. These results
are also illustrated by calculating values of the global relative error (ERR) and the maximum relative error
shown in Table 1.

Figure 4. Influence of the measurement location on the surface heat flux density estimations with or without
smoothing  (∆t=0.1s, σq=100W/m²). (a) z1=2.1mm; (b) z2=4.1mm; (c) z3=8.1mm.

The Figure 6a shows the behavior of the Kalman filter for three different values of the standard deviation σq.
Decreasing this parameter, the response of the filter becomes slower leading to an increase in the solution time-
lag. On the other hand, one can note reduction of oscillations which means that the solution becomes less
sensitive to measurement errors. So the choice of σq must satisfy a compromise between stability and precision
as explained in [9]. The use of the extended Kalman filter smoothing technique with an optimal number of future
time data provides a symmetrical and more stable solution that is in good agreement with the heat flux density
estimated with the Raynaud method (see Figure 6b). The number of future data (listed for each case in Figure6b)
depends on the value of σq. It increases as σq decreases. Choosing the nf value according to the σq value, we
obtain nearly the same global relative error ERR (see Table 2) showing a very good superposition between
calculated and measured temperatures.
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Figure 5.  Influence of the measurement location on the surface temperature estimations with or without
smoothing  (∆t=0.1s, σq=100W/m²). (a) z1=2.1mm; (b) z2=4.1mm; (c) z3=8.1mm.

Table 1. Influence of the measurement location on the accuracy
of the inverse solutions with or without smoothing.

Measurement
location zm

ERR
(%)

Maximum relative error
(%)

no smoothing smoothing no smoothing smoothing

z1 0.188 0.034 1 0.248
z2 0.323 0.038 1.53 0.356
z3 0.553 0.084 2.42 0.591

One of the main difficulties of the IHCP is the increase of the solution sensitivity to measurement errors
when using small inverse time steps. For one dimensional inverse problems, we can check the feasibility of the
surface conditions estimation by calculating a dimensionless time step characteristic of the inverse problem,
given in [3] by,
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Beck et al. showed in [3] that inverse resolution is feasible when *t∆ >10-3. Otherwise, it becomes very
sensitive to experimental errors affecting measurements. On the other hand, choosing a large value of the inverse
time step doesn�t allow to represent abrupt variations of the estimated function and leads to a solution that is not
precise. As shown in Figure 7a, the behavior of the Kalman filter using different inverse time steps confirms the
above mentioned difficulty. In the present study, the dimensionless time step *t∆ is calculated using the assumed

constant value of the thermal diffusivity. In case α depends on temperature, *t∆ is defined by using α (T0), [16].

Figure 6. Influence of the modeling error standard deviation on the estimation of the surface heat
flux density (∆t=0.1s, z1=2.1mm). (a) with the Kalman filter; (b) with the Kalman smoother.

By introducing the use of future time data in the inverse procedure, we obtain a more precise and more stable
estimation which is symmetrical according to the Raynaud method solution (see Figure 7b). The results show
that a larger number of future time data is required when using smaller inverse time steps. Figure 7b shows that
nf =5 is satisfactory for ∆t=1s, whereas a larger number (nf =23) is needed for ∆t=0.1s. Estimation results are also
validated by comparing computed and measured temperatures, which show a good superposition (see Figure 8),
and by calculating the associated relative error values (see Table 3).

Figure 7. Influence of the inverse time step on the surface heat flux density estimation
(σq=100 W/m², z1=2.1mm). (a) with the Kalman filter; (b) with the Kalman smoother.
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Table 2. Influence of the modeling error standard deviation on the accuracy
of the inverse solutions with or without smoothing.

Standard deviation
σq  (W/m²)

ERR
(%)

Maximum relative error
(%)

no smoothing smoothing no smoothing smoothing

100 0.188 0.034 1 0.248
200 0.141 0.035 0.77 0.201
400 0.109 0.032 0.61 0.133

Figure 8. Superposition of calculated and measured temperatures for Kalman smoother estimates
with different inverse time steps (σq=100 W/m², z1=2.1mm).

Table 3. Influence of the inverse time step on the accuracy of the
inverse solutions with or without smoothing.

Inverse time step
∆t  (s)

ERR
(%)

Maximum relative error
(%)

no smoothing smoothing no smoothing smoothing

0.1 0.188 0.034 1 0.248
0.5 0.272 0.041 1.30 0.317
1 0.324 0.064 1.48 0.343

5. CONCLUSIONS
An experimental study was carried out in order to analyze the behavior of a new approach, combining the use of
the Kalman filter with a smoothing technique, when applied with real measurements recorded from an
experimental set-up.

The proposed algorithm, developed to handle nonlinear inverse problems, provides a better estimation of
time-varying surface conditions, involving heat flux density and temperature, whose time lag and sensitivity to
measurement errors are reduced.

Introducing the use of an optimal number of future time measurements, the improvement in the estimation
due to the Kalman smoother is proved by a good superposition with the solution of the space marching method
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taken as the validation inverse method. The Kalman smoother inverse solution is also validated by the good
superposition between computed and measured temperatures. According to the obtained results, the new
approach adapts to nonlinear problems and fits the stochastic structure of experimental measurements.

The effect of the number of future time data on the precision and the stability of the solution has been
investigated. The results show that the number of future temperature measurements needed to obtain a
symmetrical solution increases as the standard deviation associated with the modeling error decreases. A larger
number of future time data is also required when using smaller inverse time steps or when the measurement
sensor is placed farther from the surface on which the heat flux is applied.
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